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Abstract-lsospectral molecules are nonidentical species whose molecular graphs have the same set of eigenvalues 
within HMO calculations. Several new concepts and methods for constructing pairs of isospectral graphs are 

discussed. Some possible experimental and theoretical applications of isospectral molecular pairs are outlined. 

In recent short papers we discussed the concept of 
“isospectral” molecules.’ The term is taken from the 
literature of graph theory,- where a graph is defined to 
have an adjacency (topological”6) matrix, an associated 
characteristic polynomial, and a set of eigenvalues for the 
adjacency matrix called the spectrum of the graph. 
lsospectral graphs are nonidentical graphs whose 
nonidentical adjacency matrices give identical charac- 
teristic polynomials and sets of eigenvalues.‘-” Conju- 
gated Ir-systems can be represented by simple graphical 
figures, and the adjacency matrix of a graph is isomorphic 
with the HMO secular matrix for the a-system rep- 
resented by the graph. Therefore one must admit the 
possibility of isospectral ?r molecular species, different 
systems that have identical energy levels. 

We gave examples of the smallest pairs of isospectral 
open-chain and monocyclic hydrocarbon n-systems that 
are of interest to organic chemists.’ These are the polyene 
radicals 1, the aromatic radicals shown in 2, the 

dodecahexaene isomers 3, and the IJ-divinylbenzene 
f-phenylbutadiene pair given in 4. We also defined the 
concept of “isospectral points” in the styrene graph, 
vertices 2 and 6 in 5. Attachment of any moiety M to 
points 2 and 6 in turn gives two nonisomorphic isomers, 
shown in 6, whose spectra of eigenvalues are identical. 
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The potential uses of isospectral species have only been 
alluded to in previous work, and from a rather negative 
viewpoint. For example, we pointed out’ that the 
existence of pairs of isospectral molecules in which one 
compound is formally cross-conjugated in comparison to 
the other (e.g., the pairs in 3 and 4) did not support the 
usual presupposed idea of the general effect of cross- 
conjugation. Other workers have considered isospectral 
pairs solely as impediments to designing computer-based 
chemical reference systems.‘*-‘5 

In the present paper we will try to suggest some positive 
applications related to experimental consequences of 
isospectrality. Also, general methods for locating isospec- 
tral points and constructing isospectral molecular graphs 
will be given, along with a description of our mathematical 
approach. A new structural feature, unrestricted substitu- 
tion points which maintain the existence of isospectral 
points, will be described. Finally we will give numerous 
examples of isospectral molecular pairs simply because 
we think they are intriguing per se, and because we believe 
their syntheses and correlations of properties with theory 
provide interesting new challenges in organic chemistry. 

DEklNtTtONS AND PROCEDURES 

The graphical figure itself or a capital letter will be used 
to represent a molecular graph. As an example G could 
represent the styrene graph in 5. The graph obtained after 
deletion of a single vertex and connecting edges will be 
designated as G(-i) where i is the index of the deleted 
vertex, and the symbol G(r)-G(s) will stand for a 
connected graph with two components of type G joined at 
r and s respectively. Examples are given in 7. 
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‘Ihe graph or the alphanumeric designation, usuahy in 
brackets, will also be used to stand for the characteristic 
polynomial of the adjacency matrix of the graph, which 
for brevity will be called the polynomial of the graph. To 
demonstrate that two different systems are isospectral we 
find that it is much easier and faster to show the 
equivalence of their polynomials than to solve for the 
eigenvahres of their secular matrices. Also, one should 
note that it is usually not necessary to write out the terms 
of the polynomial since an equivalency of graphical 
symbols rigorously shows an equivalency of associated 
polynomials. 

Our main tools for manipulating the polynomials and 

graphical symbols are decomposition theorems of He% 
broker,” and a graphical method for enumeration of 
the coe5cient terms in the secular polynomial due to 
Co&m” and Sachs.” Heilbronner showed how the 
polynomials for complex systems could be derived from 
those of the component parts, Rq 1. The polynomial for a 
system 

PI = IQ(s) -WI = KY[Rl - KH-@IP( (1) 

P composed of two parts Q and R joined by points q and r 
respectively is equal to the product of the polynomials of 
the component parts minus the product of the component 
graphs with the joining points deleted. First we use 
Heilbronner’s method to simplify the graphical figures, 
and then apply the Coulson-Sachs theorem to find the 
actual polynomials. We will not describe the Coulson- 
Sachs method except to say that each coefficient in the 
secular polynomial is a simple function of the number of 
ways the graph can be partitoined into disjointed 
two-point and cyclic graphs. Adequate expository de- 
scriptions of the method are available’*‘9 and the 
technique can be learned easily in a few minutes. 

As an example, let us compare the polynomials of the 
two graphs stated to be isospectrai in 6. Examination of 
Rqs 2 and 3 shows that the polynomials are identical if 
G(-2)=G(-6). Their polynomials are respectively (X) 
(x” - 6x’ + 9X2 - 4) and (X’ - 6x’ + 9X’ - 4X) which are 
identical after multiplication in the first expression. 
Incidently this also demonstrates that points 2 and 6 in the 
styrene graph are isospectral points since M is an 

M 
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MI@1 - M-m)lIO(- 2)l (2) 

MAGI - M-m)ltG(-611 (3) 

arbitrary graph. Infinite numbers of isospectral graphs are 
therefore obtainable using this principle. 

A proof that the openchain (tree graphs) pair shown in 
3 are isospectral serves to illustrate our methods further. 
If we let L,, represent a linear tree graph with n vertices, 
scission at the points indicated in Rqs 4 and 5 

u-81 [-cl - IUrLIIU (4) 

and the use of Heilbronner’s theorem gives the two sets of 
identical terms shown. This example also shows that it is 
not necessary for isospectral graphs to be derivatives of a 
parent graph with isospectral points. In the case of 
isospectral graphs 3 there does exist a mutual reciprocal 
relationship of the structural fragments obtained upon 
simple scission, but the example given in 1 shows that this 
also is not a necessary condition for isospectrality. As far 
as we can discover, one must identify isospectral pairs 
such as those in 1 by trial and error or serendipity. We will 
not discuss examples obtained by these latter two 
methods in this paper. 

The identification of isospectral points in molecular 
graphs is a very important aspect of a consideration of the 
isospectral phenomenon. No discussions exist in the 

graph theory literature except for a single article by 
Schwenk” concerned with the 9point graph shown in 8, 
where the two isospectral 

points are circled. In the case of 8 the discovery of the 
isospectral points was evidently fortuitous, so the work 
does not provide any sort of guide for future exploration. 

In this section we will describe three more or less 
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general methods for locating isospcctral points and for 
generating molecular graphs with isospectral points. 

HMO Tory. Vertices in a molecular graph that are 
related by symmetry are not isospectral. Substitution at 
such points successively will give two identical graphs 
rather than two nonisomorphic graphs with identical 
polynomials. However a consideration of the symmetric 
points led us to conjecture that isospectral points must 
have identical absolute values of eigenvectors in every 
nondegenerate eigenlevel. A proof of this conjecture is 
given in an appendix, and one can easily see that the 
hypothesis is true by examining tables of eigenvectors and 
eigenvalues for particular systems. Many good compila- 
tions are available, and several pairs of isospectral points 
in readily available n-systems can be discovered in this 
way. Those taken from the Coulson and Streitwieser 
compilatiorP are circled in 9-17. One notes that a 

molecule may possess more than one pair of isospectral 
points as for example in 16, I-vinylphenanthrene, which 
has 4 sets. 

Isospectral pairs of molecular systems of many 
different types can be obtained by utiliing these 
structures. Some general theorems and procedures will be 
given later. For now, we will just mention that isospectral 
species can also be obtained either by deletion of 
isospectral points or by changing the isospectral points to 
heteroatoms in turn. In the latter case, the change to a 
heterosystem must be accomplished within the HMO type 
of accomodation of heteroatoms, i.e., differing Coulomb 
and nearest neighbor resonance integrals. 

Unrestricted substitution points. Inspection of the 
graphs in 9 shows that substitutions of methylene. vinyl, 
or phenyl groups ortho to the vinyl group of styrene graph 
do not have any effect on the isospectrality of vertices 2 
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and 6. One may surmise that the ortho positions are symmetry (C. > G). Systems with 3-fold symmetry are 
unrestricted points were substitution of any kind leaves especially useful and are described in the next subsection. 
the original isospectral points invariant from this stand- Use of three-fold symmetry. Consider any system with a 
point. If this is true, and if unrestricted points are three-fold axis such a9 for example tripenylene 21. 
generally available, the potential pool of isospectral sets 
of molecules becomes enormously multiplied. From the 
styrene graph alone one can obtain any number of 
isospectral pair9 of molecules by substitution first at the 
ortho position and then substitution in turn at the two 
isospectral points. The substituents can be of any type 
and size including hetero and saturated moities. The proof 
of the conjecture is easily demonstrated as shown in Eqs 6 
and 7, since all terms on the right-hand sides of Eqs 6 and 

“&A=[ bA] [Ml 

&fA = l&i [Ml- 

Y L\/J 
A4 

7 are identical, cf. Eqs 2 and 3 and subsequent discussion. 
In the same way, one can also show that simultaneous 
introduction of two different substituents at both unre- 
stricted positions preserves the isospectral points at 
positions 2 and 6. 

Our experience with HMO theory let us to expect that 
the Coulson Longuet-Higgins” atom-atom polar- 
izabilities of styrene graph ortho positions with either of 
the two isospectral points ought to be numerically the 
same. To second-order substitution at unrestricted points 
would then effect eigenvectors of isospectral points 
equivalently. The expectation proved to be correct for the 
styrene graph, implying that one could also use HMO 
tables to find unrestricted substituent points. Using this 
approach, in conjunction with the Coulson-Streitwieser 
tables, unrestricted points were discovered in graphs 10, 
13, and 14, as shown by the squares in 18, 19, and 28 
respectively. 

1 bl[M(-m)l (6) 

M-m)1 Q 

Because of the symmetry, points a, b, and c are equivalent 
points, as are d, e, and f. The absolute values of their 
eigenvectors must be identical in nondegenerate eigen- 
levels. The reciprocal pair-wise perturbations a-b, b-c, c-a 
are also required to be identical from symmetry, and 
similarly for the pairs d-e, e-f, and fd. This means that 
substitution at a destroys the 3-fold symmetry of the 
molecular graph but must leave the points b and c 
isospectral. A substituent may be added at a which is now 
an unrestricted point for isospectral points b and c. The 
same considerations hold for the second graph in 21, and 
examples of the general potential nonisomorphic isospec- 
tral pairs of graphs are given in 22. 

Incidently, the ideas discussed in the previous parag- 
raph also reveal another method for finding graphs with 
isospectral points. Removal of point a or d from 
triphenylene can be looked upon as a type of substitution. 
The resulting graphs have isospectral points as shown by 

18 19 m 

In fact each system has two unrestricted points for both the circles in 23. Isospectral and unrestricted points in 
pairs of isospectral points. The graphs in 19 and 20 are coronene graph as determined using the Cfold symmetry 
actually special cases (in part) of a more general type of are shown in 24. The graph given in 25 shows that 
system which will always have at least one unrestricted isospectrality is not confined to akemant systems. 
point and an isospectral pair of points. The basic structure A decomposition principle. At present we have found 
is any polyclic structure with a high order of rotational one additional way to generate graphs with isospectral 
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points. In certain molecular graphs there are particular 
nonequivalent points that seem to be related by a 
psuedo-symmetric element in that removal first of one 
point and then the other does generate identical graphs. 
The circled points in all of the graphs given in 26 are of 
this type. For example, deletion of either point in 
I-vinyl-naphthalene gives rise to 1-propenyl-2- 
vinylbenzene graph, and a consideration of the Heilbron- 
ner decomposition theorem demonstrates the isospectral- 
ity of each pair of vertices. One can of course invert the 
whole thinking process and build any number of graphs 
with isospectral points if one retains the decomposition 
structural feature of the graphs in 26. The structures with 
circled isospectral points shown in 27 were induced in this 
way. Many hundreds of additional examples could be 
given, but we hope these few are enough for illustrative 
purposes. 

GENERALPU-OF-PO~ 

In this section, we will state some general theorems 
regarding substitution properties of isospectral and 
unrestricted points. The theorems are best understood 
with the aid of examples, and we will use the styrene 

27 

graph to illustrate many of the properties. However, it 
should be understood that each theorem is perfectly 
general and applies to all graphs with isospectral points. 
No mathematical proofs of the theorems will be given, but 
each one can be easily shown to be true. 

Attachment of identical substituents simultaneously at 
isospectral points leaues the points isospectral. Graphs of 
this type with heteroatoms at the isospectral points are 
obvious chemically interesting examples. 

Two diflerent substituents attached to two isospectral 
points in a reciprocal relationship generate isospectral 
molecular graphs. 

Attachment of unrestrictedpoints through any moiety to 
each of a pair of isospectral points in turn generates 
isospectral species. Some interesting isospectral an- 
nulenes as shown in 32 can be generated using this 
principle. 

In systems with two or more pairs of isospectrol points, 
the difering sets may be connected through any moiety to 
yieId isospectral species. We are certain that there are 
many more extensions and corollaries of these theorems. 
However, these particular relationships are the only ones 
that will be used in the subsequent discussion. 
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APPlEATKINS 
Isospectral molecular species are nonisomorphic sys- 

tems with identical sets or spectra of eigenvahres. 
However, the eigenvahres are only identical within those 
approximate types of MO calculations that postulate 
Hamiltonian matrix elements for bonded neighboring 
atomic positions. Isospectral pairs are therefore obviously 
useful for distinguishing between those physical and 
chemical properties that are solely functions of the 

bonding topological network, and properties that are 
functions of longer range interactions. An isospectral pair 
of molecules could allow one to test the accuracy of a 
simple MO calculation as compared to some more 
elaborate type of theoretical approach. 

For example, an isospectral pair should have identical 
oxidation potentials if the HMO method is sufficient to 
describe the a-systems under consideration. Any differ- 
ences would have to arise from some factors which are 
not considered in the HMO approximation. Some of these 
factors could be nonplanarity, interaction of the D and ?r 
system, variable bond lengths, inductive effects propa- 
gated to distant atoms, and field effects transmitted 
through space. The devising of structural pairs which 
isolate a single one of these factors will be B fruitful 
endeavor for future work. 

One additional aspect of isospectral and unrestricted 
points needs some comment. Although we have been 
careful to use abstract symbols for the substituent 
moities, the very general nature of a possible substituent 
should be emphasized. The substituent at an unrestricted 
point or isospectral point can be a p-system, an alkyl 
chain, heteroatoms or chains with heterosubstituents, or 
even the anihilation substituent, i.e., the deletion of the 
vertex. The theoretical description of the substituent is 
immaterial. Any types of parameterization or formulae 
for matrix elements in the substituent have absolutely no 
effect on the isospectral qualities being considered. 
Substituents of any type at unrestricted points leaves the 
isospectral points, and successive substitution at isospec- 
tral points always gives a pair of isospectral molecules. 

The eigenvahres from an MO calculation can be 
correlated with resonance energies, ultraviolet spectra, 
oxidation and reduction potentials, and certain kinds of 
reactivity.” Assuming Koopmans’ posttdate23 photoelec- 
tron spectroscopy can provide detailed orbital energy 
level diagrams for organic molecules,” and this is 
probably the preferred experimental method for compari- 
son of isospectral molecules. The pairs shown in 34-40 are 
meant to be ilhrstrative of the many different types of 
pairs of systems that can be constructed. 

The ionization constants of the carboxylic acids in 3!I 
might give some insight into fluorine substituent field 
effects or possibly reflect hydrogen-bonding to fluorine in 
one of the isomers. If the ionization constants of the acids 
in 37 differ tbis could reflect a buttressing effect of the 
bulky t-butyl sub&rent in the peri position. The point is 
that both unionized acids and the anion isomers are 
perfectly isospectral. Nonbonded interactions must ac- 
count for any observed differences. 

The diazo compounds 34 should have identical photo 
electron spectra. An observed difference could be a 
function of variable bondlengths or nocoplanarity of vinyl 
and aromatic ring components. Nonidentical spectra for 
36 and 39 would not be explainable on those grounds. 
Lone-pair “peri” effects. might account for different 
properties in 36. In 38 one could study the carbonyl 
stretching frequencies and attribute difference to differing 
field effects of the fluorine substituents. It would be 
interesting to study the rates of tritium isotope exchange 
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in sulfuric acid using the tritium substituted _ _ styrene 
isomers in 40. In this case, both ground state molecules 
and the carbonium ion intermediates are &spectral even 
though one carbonium ion is fotmally more localked than 
the other. 

35 

q+ o+ 
t-Bt COOH 

Gkicher has carried out variable bondkngth SCF- 
LCAO-MO calculations on phenylisopropenyl and 4- 
vinylbenxyl cations as shown in 42.= Within the HMO 
approximation these cations are of course isospectral and 
therefore &energetic. The SCF calculations give very 
d&rent results with the isopropenyl system more stable. 
The relationship between the two systems could be 
possibly studied by investigating the rates of solvolysis of 
parent p-toluene-sulfonate esters. Gkicher suggests that 
studies of systems of this type might allow firm 

QOTs- 9 
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conclusions as to which theoretical method (HMO or 
SCF) is better for this class of structures. 

SUMMARY 

We have given many detailed examples of our inductive 
methods for constructing isospectral molecules so that 
others will be able to construct their own systems of 
interest. We have also given a few examples of isospectral 
pairs of molecules that may prove interesting if subjected 
to experimental study. Fiiy we made some short 
comments on possible experiments in which the isospec- 
tral pairs could be used to provide information about 
intramolecular structural interactions in both ground-state 
molecules and reactive intermediates. We expect many 
additional developments. 
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APPENDIX 

In this appendix we glve a theorem which provides a useful 
means for the identification of isospectral points based upon the 
coefficients of eigenvectors of a graph. Although this theorem fails 
to distinguish between isospectral and equivalent points, the latter 
points can be eliminated by relating them to symmetry operations 
on the graph. Those unfamiliar with the bra and kef notations 
employed here are referred to Dirac.” 

Thus the elements of a row of Y indexed by I and q are all zero if 
q# I, or contain (c,Il!&) as a factor if q= I. Similarly. the 
elements of a column of Y’ indexed by I and q are all zero if q # I. 
or contain (l&, II) as a factor if q = 1. IO the secular equation 

Theorem. Let (ills) denote the ilh component of the qlb 
degenerate eigenvector of the weight matrix W of a graph G 
corresponding to ao eigenvalue E,, where I = I, 2,. . . , L. and 
4= I. 2...., 0,. Points i, and j, of G are either isospectral or 
equivalent if and only if 

w,= g, [+I 
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(blc. h) = 8(q, Ixb(c, II). 

The index c identities the components associated with such a 
choice. By orthononnality, these components are related to those 
in any set by 

((bk, II))* = 2 ((iollq))‘. 
9-1 

On a basis consisting of the eigenvectors of W followed by the 
eigenvectors of W 

k 11). . . . , Ic. I@, . . . , Ic, LQ,). ll’l’), , . . , p’q’), . . . , [~q’,_.)} 

W, is transformed to a partitioned matrix of the type 

EY 

[+I Y’ E 

where E and E’ are diagonal matrices containing the elgenvalues 
of W-and W’. lhe elements of the interaction matrix Y are give0 

by 

(c, IqlYll’q’) = 1 C (c, lqlBo(lXli’)(i’~Tq’) 
I I’ 

= 2 2 8(i, io)8(q. lXc. lllb)wrVP’q’) 
I I 

= 6(q. IXC, I&) 7 w,(i’)l’q’) 

- bkl, IXG Illshws’). 

det [$$$&I=0 

we can divide each row indexed by I and q = I by (c. Ilk,,) and each 
column indexed by I and q = I by (i&z, II) to obtain 

det [wi]=O. 



The elements of 2 are 

{c,l,q,/Zlc,l2qt)= S(l,, M&q,,q,t 
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points and weights w,. of G’, the only change in the secular 
equation occurs in the denominators of the elements of 2. The 
same eigenvalues of WT will therefore be obtained in general only 
if 

#blC, ii))’ = (‘&&. ft))‘, i = 1‘2.. . . , L. 

and the elements of S are 

(c, lqlslrq’) = S(q, l)so’q’). 

Consequently, the points b and j, are either isospectral or 
equivalent if and only if 

If we consider attachment of G’ to G at the point ia by the same T ((ibil,))’ = z &&,))“, i = 1,2,. . . , L. 


